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Machine Learning Applications in UB

Boosted Decision Tree 
• Used for low energy (>40 MeV) NC1P search 
• Input: reconstructed parameters (length, angle, etc…) 

•  Analysis details available in UB public note page 

http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1025-PUB.pdf
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Machine Learning Applications in UB

Boosted Decision Tree 
• Used for low energy (>40 MeV) NC1P search 
• Input: reconstructed parameters (length, angle, etc…) 

•  Analysis details available in UB public note page 

Convolutional Neural Networks 
• Demonstrated with LArTPC in 1st UB publication 
• Usage being developed for multiple purpose 
-  Reconstruction: vertex detection, PID, clustering… 
-  Analysis: final state classifier  

• Input: either raw data (waveforms) or reconstruction

My focus today
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MicroBooNE 
LArTPC 

Image Data

55 cm
Run 3469 Event 53223, October 21st, 2015 
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MicroBooNE 
Physics goal: understand excess νe observed by MiniBooNE  

• Must be able to identify νe events at low energy (100 to 600 MeV) 
… and more:  

• LArTPC R&D, event reconstruction, ν-Ar x-section & nuclear effects

MicroBooNE!



LArTPC: Particle Imaging Machine
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Bubble Chamber

Liquid Argon Time Projection Chamber 
• Digitized bubble Chamber-like images 
• Hi-resolution (~3 mm/px) 2D views + calorimetric information

νµ



Three 2D Views

U

V

Y

Reconstructed 3D View

 Challenges 
•  Complicated event reconstruction 
•  Small signal, large detector, high 

rate of un-tagged cosmics

LArTPC: Particle Imaging Machine



Challenges for Neutrino Analysis (I)

Challenge 1: small signal, 
 a large detector filled with cosmics!

BDT selected proton 
MicroBooNE 

Public Note 1025

http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1025-PUB.pdf
http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1025-PUB.pdf


55 cm
Run 3469 Event 53223, October 21st, 2015 

νµ

p

µ

π?

Cosmics

Cosmics

Cosmics
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Challenge 2: identifying particle types 
Necessary for selecting neutrino interaction

Challenges for Neutrino Analysis (II)
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Challenge 3: Shower Energy 
Reconstruction is already hard, and one 
must cluster all scattered charge 
depositions to reconstruct energy well

Challenges for Neutrino Analysis (III)



Our data is an “image”, 
a matrix of numbers

Not how it looks in C++
01101010100101011010101001011010
10111010101001010100010010101101
0101001011010101001010110101010
01011010101001010110101010101101
0101001010110101010010110101010
01011010101001010110101010010110
10101001010110101010101101010100
10101101010100110101101010100101

This is how it looks in C++

we wish

in reality

Challenge 4: programming is not easy 
Need efficient, fast pattern recognition algorithms and a 
framework to run a chain (or multiple chains) of them
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Challenges for Neutrino Analysis (IV)



Solutions? 
• Path A: “traditional path” 

- Hand-engineered reconstruction algorithms 

• Path B: machine learning 
- Suited tool for a pattern recognition  
- “Deep Learning” 
‣In particular… 

Convolutional Neural Networks (CNNs) 
‣Scalable technique, generalizable to various tasks 
‣Superb performance on image data analysis
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… enough challenges …



Convolutional 
Neural Networks 

for 
LArTPC Analysis

NCπ0
CCQE

CC1π
DIS..!

Outline 
• Machine learning apps in MicroBooNE 
• LArTPC image data + challenges 
• Convolutional Neural Networks in MicroBooNE 
• Summary



CNNs for Image Analysis

Image 
Classification
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Pixel Classification

Context Analysis Image 
Classification

•Superb image analysis 
capabilities 

•Trainable from raw data 
(large tensor)



Pixel Labeling 
+ 

Particle ID

Muon

Proton

•Event selection (image classification) 
•Vertex finding (object detection) 
•Clustering (semantic segmentation) 
•Particle identification (image classification)

Is neutrino here?
Detect interaction 
and classify type

νµ + n ➞ µ + p
17

CNN in MicroBooNE (I)
Applications in MicroBooNE



•Event selection (image classification) 
•Vertex finding (object detection) 
•Clustering (semantic segmentation) 
•Particle identification (image classification)
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CNN in MicroBooNE (I)
Applications in MicroBooNE

Highlights these CNNs in next slides



CNN in MicroBooNE (I)
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π- p

µ-γe-

Particle identification 
Trained a network to distinguish 5 particle types

•Simulated particles 
- using 1 (collection) plane 

•Supervised training 
- 22,000 images / type 

•Flat momentum dist. 
- Uniform position 
- Isotropic [100, 1000] MeV/c



CNN in MicroBooNE (I)
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Particle identification 
Trained a network to distinguish 5 particle types

Resource Usage 
Architecture study include performance vs. speed! 

Current architecture choice ~7 ms/image @ Titan X GPU)

Particle Efficiency Mid-ID

e- 0.778 γ … 0.20

γ 0.834 e- … 0.15

µ- 0.897 π- … 0.054

π- 0.710 µ- … 0.226

proton 0.912 µ- … 0.046

Further improvement?
• ~5 to 10% improvement by 
exploring network architectures 
- network width, effective depth 

• Additional ~5% improvement by 
combining 3 planes using siamese 
architecture 

JINST 10.1088/1748-9221

http://iopscience.iop.org/1748-0221/12/03/P03011/


The box is a “label” 
(“region detection”)

CNN in MicroBooNE (II)
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Event vertex detection 
Trained a network to find neutrino interaction region 

• Training sample uses simulated neutrino + cosmic data image 
- Supervised training using ≃100,000 collection plane images (1-plane)



CNN in MicroBooNE (II)
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The box is a “label” 
(“region detection”)

Event vertex detection 
Trained a network to find neutrino interaction region 

• Training sample uses simulated neutrino + cosmic data image 
- Supervised training using ≃100,000 collection plane images (1-plane)



CNN in MicroBooNE (II)
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Yellow: “correct” 
bounding box 
Red: by the network

Network Output 
≃ 2.6m (width) x 1 m (height) MicroBooNE 

Simulation + Data Overlay

νµ

JINST 10.1088/1748-9221

Event vertex detection 
Trained a network to find neutrino interaction region 

• Training sample uses simulated neutrino + cosmic data image 
- Supervised training using ≃100,000 collection plane images (1-plane)

http://iopscience.iop.org/1748-0221/12/03/P03011/
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CNN in MicroBooNE (II)

JINST 10.1088/1748-9221

Event vertex detection 
Trained a network to find neutrino interaction region 

• Training sample uses simulated neutrino + cosmic data image 
- Supervised training using ≃100,000 collection plane images (1-plane)

http://iopscience.iop.org/1748-0221/12/03/P03011/
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Particle clustering using a network 
CNN designed to segment pixels by predefined semantics 

• Can perform particle-wise pixel clustering  
• On-going work 

- “track/shower” pixel labeling by the network (clustered by algorithm) 
- Custom training technique to improve performance on LArTPC image

νe
proton

e-

ADC Image Network Output

CNN in MicroBooNE (III)



Particle clustering using a network 
CNN designed to segment pixels by predefined semantics 

• Can perform particle-wise pixel clustering  
• On-going work 

- “track/shower” pixel labeling by the network (clustered by algorithm) 
- Custom training technique to improve performance on LArTPC image
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ADC Image Network Output

Also making sure the networks 

work on data as we go! 

CNN in MicroBooNE (III)
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CNN in MicroBooNE (IV)
Optimize multiple tasks together (future project) 
“Multi-task Network Cascade” can introduce task dependencies 

• Allows to optimize the whole chain together

… sorry for my parenthood …



•Event selection (image classification) 
•Vertex finding (object detection) 
•Clustering (semantic segmentation) 
•Particle identification (image classification)
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CNN in MicroBooNE (V)
Some studies published!

MicroBooNE’s 1st paper 
JINST 10.1088/1748-9221 

 arXiv 1611.05531 

Feel free  
to contact us 
for details!

https://arxiv.org/abs/1611.05531
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
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Generative Adversarial Networks (GANs) 
• New technique, great intellectual interest in the field (both CV and HEP) 
• Possibility to learn generic image features from real data 

- Semi-supervised or unsupervised learning 

• Example applications 
• LArTPC image generator 
• MC image “encoder” 

- Refine “MC images” into “data images”
“encoder” for human eye illustration  

by Apple research team 
arXiv:1612.07828

“Labeled” image database 
• “neutrino event or not”, “region of interaction”, “particle type”, etc… 
• Key to accelerate the technique R&D (similar to ILSVRC in CV)

LArTPC “real data” sample 
MicroBooNE provides LArTPC image data from the real detector

CNN in MicroBooNE (VI)

https://arxiv.org/pdf/1612.07828.pdf


… wrapping up …
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Outline 
• Machine learning apps in MicroBooNE 
• LArTPC image data + challenges 
• Convolutional Neural Networks in MicroBooNE 
• Summary



Take Away Messages
1. LArTPCs are high precision detectors

3. MicroBooNE utilize CNN for reconstruction/analysis

4. MicroBooNE provides unique opportunity to study real 
large scale LArTPC image data, and important challenges 
to overcome for future LArTPC detectors
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Inside 
Kazu

Thank you! 
for your attention :)

2. LArTPCs need advanced pattern recognition algorithms



Back up



CNN for LArTPC 
Image Analysis

33

… these images 
are almost empty…



⟶

x0 
 

Background: Neural Net

The basic unit of a neural net 
is the perceptron (loosely 
based on a real neuron) 

Takes in a vector of inputs (x). 
Commonly inputs are summed 
with weights (w) and offset (b) 

then run through activation.
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x

⋮

[ 

[ 

x1 
 

xn 
 

∑

w0

w1

wn

⋮
+ b

Input Neuron 
Sum

Activation 
Output

σ( x )➞

Introduction to CNNs (II)
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By picking a value for w and b,  
we define a boundary  

between the two sets of data

Perceptron 2D Classification

from wikipedia

[ x0 
 

x1 
 

∑0

Output

[ 

cat 
dog

Imagine using two features to separate cats and dogs

∑0

Introduction to CNNs (II)

0

https://en.wikipedia.org/wiki/Perceptron
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Maybe we need to do better: assume new data point  
(My friend’s dog — small but not as well behaved) 

(Thor)

We can add another perceptron 
to help classify better

Perceptron 2D Classification

x0 
 

x1 
 

from wikipedia

∑0

∑1

∑0
∑1

Introduction to CNNs (II)

0

https://en.wikipedia.org/wiki/Perceptron


[ 
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(Thor)

Perceptron 2D Classification

x0 
 

x1 
 

Output

[ 

cat 
dog∑1

∑0

∑0

∑1

∑2

∑2

Another layer can classify based on  
preceding feature layer output

Maybe we need to do better: assume new data point  
(My friend’s dog — small but not as well behaved) 

Introduction to CNNs (II)



Fully-Connected Multi-Layer Perceptrons

A traditional neural network consists of a stack of layers of such 
neurons where each neuron is fully connected to other neurons of 
the neighbor layers

38

Introduction to CNNs (III)
“Traditional neural net” in HEP



Problem: scalability

Feed in entire image

Use pre-determined features

Problem: generalization

Cat?

Cat?

39

Introduction to CNNs (III)
“Traditional neural net” in HEP

Problems with it…



CNN introduce a limitation by forcing the network to 
look at only local, translation invariant features

input feature map
hidden  
layers

~x

input  
layer,   

output  
layer,   ~y

(a) Feed-forward neural network (b) Feed-forward neural network

neuron Activation of a neuron depends 
on the element-wise product of 
3D weight tensor with 3D input 

data and a bias term
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• Translate over 2D space to process the whole input 
• Neuron learns translation-invariant features 
• Applicable for a “homogeneous” detector like LArTPC

Introduction to CNNs (III)

Want more details?  
Feel free to ask me later!



Track/Shower 
Pixel Labeling 

~ How Does SSNet Work? ~

41

NCπ0
CCQE

CC1π
DIS..!



CNN is a neural network formed with multiple 
convolution layers of neurons
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Quick Recap on CNN

Activation of a neuron depends 
on the element-wise product of 
3D weight tensor with 3D input 

data and a bias terminput feature map
hidden  
layers

~x

input  
layer,   

output  
layer,   ~y

(a) Feed-forward neural network (b) Feed-forward neural network
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Introduction to CNNs
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Introduction to CNNs
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Genty DL µB NP

1 0 2 . 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.  .  ..  .  .
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Each filter (neuron) translates over 
2D space to process the whole input, 

producing a “feature map”.

neuron



• Goal: provide a single label for the whole image 
• How: transform the higher spatial resolution input (i.e. image) into 

a vector of image features, ultimately a 1D array of feature 
parameters useful for the whole image labeling, by a successful 
chain of convolutional and pooling operations.

43

In
pu

t I
m

ag
e

1st layer output 
feature map

Classes

Down-sampled 
Feature Maps

CNN for image classification

Quick Recap on CNN

2nd layer output 
feature map

3rd layer output 
feature map



Quick Recap on CNN
Feature map visualization example 

• https://www.youtube.com/watch?v=AgkfIQ4IGaM

Neuron concerning face Neuron loving texts
44

https://www.youtube.com/watch?v=AgkfIQ4IGaM


Semantic Segmentation Network
How is it different from Image Classification?
Example CNN for Image Classification

Example CNN for Semantic Segmentation

In
pu

t I
m

ag
e

Feature map preserves 
spatial information

Classes

In
pu

t I
m

ag
e

O
ut

pu
t I

m
ag

e

Down-sampled 
Feature Maps

Up-sampled 
Feature Maps

feature
tensor

• Classification network reduces 
the whole image into final 
“class” 1D aray

• SSNet, after extracting class 
feature tensor, interpolates 
back into original image size

Down-sampled 
Feature Maps

Feature tensor is interpolated back into original image 
by up-sampling and interpolation operations45
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Semantic Segmentation Network
How to train SSNet?
Supervised training, like image classification 
But the labels (and errors) are pixel-wise 



Semantic Segmentation Network

47



SSNet UB Analysis

U-Net + ResNet module design 
• Developed for bio-medical research 

- … to mask pixels of living cells (for automatized image analysis) 
- Designed for better spatial accuracy to get cells’ boundary correct 

• Use ResNet architecture for convolution layers
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Spatial 
Downsampling

Interpolation 
Up-sampling

Biocell 
“Raw” Image

Biocell 
Segmented

“U” shape if formed 
by concatenating 

feature maps
Segmented pixels of 
living cells (yellow 

boarder is truth label) 
arXiv:1505.04597

https://arxiv.org/pdf/1505.04597.pdf


Training SSNet
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Input Image “Label” Image 
(for training)

“Weight” Image 
(for training)“Pixel Weight” for training 

• Assign pixel-wise “weight” to 
penalize mistakes 

• Weights inversely proportional to 
each type of pixel count 

• Useful for LArTPC images ( low 
information density)
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MicroBooNE 
LArTPC Detector 

Quick Guide

55 cm
Run 3469 Event 53223, October 21st, 2015 



TPC Working Principle (I)

Cathode @ 70 kV 
(plate)

Anode 
(wire plane)

Electric Field 
~270 V/cm

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-
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ν



Anode 
(wire plane)

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Scintillation Light

Electrons

Scintillation Light 
detected by PMTs

Cathode @ 70 kV 
(plate)

Electric Field 
~270 V/cm
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TPC Working Principle (II)



Scintillation Light 
detected by PMTs

Anode 
(wire plane)

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Charge collected 
by wire plane

Drift Time = X position

Cathode @ 70 kV 
(plate)

Electric Field 
~270 V/cm
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TPC Working Principle (IV)

Three 
Wire Planes



MicroBooNE TPC & Cryostat

Anode Wire Plane Cathode Plate
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MicroBooNE TPC & Cryostat

Anode Wire Plane Cathode Plate
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MicroBooNE TPC & Cryostat


